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A Trivariate Version of 'Lévy's Equivalence' DTlC

by Gordon Simons*
University of North Carolina, Chapel Hill

/ _
y Summnary
It is shown that the trivariate stochastic processes {(Mt - wt, Mt'
©,), t >0} and {(IW, L,, T), t > 0} have the same distributions when:
W= {Wt. t >0} is a Wiener process, Mt is the maximum value attained by W
over the time interval [0,t], et is the time the maximum value is attained,
Lt is the local time of W at level zero and time t, and 'l‘t is the last time
4
: W is zero in the time interval [0,t]. A straightforward proof, based on
! "Tanaka's formula", establishes this result by deriving an almost sure
L version of the equivalence.
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+ As described by Knight (1981), "Lévy's equivalence" refers to the
" equality in distribution of the bivariate stochastic processes {(Mt - W,
~
A M), t >0} and ((IW |, L)) t >0}, Here, W= (W,, t >0} is a (standard)
S
t\.'_" Y . - . .
9 Wiener process, Mt = mxoﬁsﬁt Ws, and Lt is the local time of W at level
N e ™~

. zero and time t. Jin a recent paper [3], the author presents an elementary
oy
derivation of a discrete analogue of this result, for a synmetric simple

random walk, which he then _uses to derive Lévy's equivalence. The

cho7i > T !

. objective here is to point out that there is a trivariate version of Lévy's
equivalence,which states that the processes {(Mt -7}1{»;"’Mt, et). t >0} and
{(lwtl, Ly Tt)' t > 0} have the same distributions, where e, € [0,t] is

the time at which the maximum Mt is attained, and ’l‘t is the last zero of W

N P T Sl
in the time interval [0,t]. D L oltSonat / ST As Srhs e prtsrs
_J/Jfl’/‘h/’/ﬂ/ Iy [4//1/)\14/ fyv-—-u,:—- ;
The proof depends on Tanaka's formula (ef. an (1969), page 68), /

i§ which says / '
3“ -
‘ L, = thl + W, , t >0,
) - -
% where W = {wt, t >0} is a new Wiener process defined by
:':‘ . ‘t
W, = )g (W)W, , t>0,
3 with h(+) = -sign(+)  (cf. McKean (1969), page 29). Observe that
o W - Wy = Wl - W[ - (L, - L) < IW I, s€(o,t].
A
L The inequality is an equality if and only if s = Ty, Thus
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: The inequality is an equality if and only if s = T,. Thus

(1) M, - W, M, ©) = (IW], L, T,) , t>0,

where M, = maxOSngs, and ©; € [0,t] is the time of the maximum. It
should be emphasized that (1) is an almost sure identity in t for two

trivariate stochastic processes. Consequently, ((Ml Wi, M, 8), t >0}

and {(lwtl, L¢, Tg), t 2> 0} have the same distributions as asserted.
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